数据分析常见问题


随着大数据概念的火热,数据科学家这一职位应时而出,那么成为数据科学家要满足什么条件?或许我们可以从国外的数据科学家面试问题中得到一些参考,下面是77个关于数据分析或者数据科学家招聘的时候会常会的几个问题,供各位同行参考。

  1. 你处理过的最大的数据量?你是如何处理他们的?处理的结果。
  1. 告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?
  1. 什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?
  1. 什么是:协同过滤、n-grams, map reduce、余弦距离?
  • 协同过滤

    要理解什么是协同过滤 (Collaborative Filtering, 简称 CF),首先想一个简单的问题,如果你现在想看个电影,但你不知道具体看哪部,你会怎么做?大部分的人会问问周围的朋友,看看最近有什么好看的电影推荐,而我们一般更倾向于从口味比较类似的朋友那里得到推荐。这就是协同过滤的核心思想。

    换句话说,就是借鉴和你相关人群的观点来进行推荐,很好理解。在协同过滤中,有两种主流方法:基于用户的协同过滤,和基于物品的协同过滤。
    基于用户的 CF 的基本思想相当简单,基于用户对物品的偏好找到相邻邻居用户,然后将邻居用户喜欢的推荐给当前用户。计算上,就是将一个用户对所有物品的偏好作为一个向量来计算用户之间的相似度,找到 K 邻居后,根据邻居的相似度权重以及他们对物品的偏好,预测当前用户没有偏好的未涉及物品,计算得到一个排序的物品列表作为推荐。 下图给出了一个例子,对于用户 A,根据用户的历史偏好,这里只计算得到一个邻居 - 用户 C,然后将用户 C 喜欢的物品 D 推荐给用户 A。
    基于物品的 CF 的原理和基于用户的 CF 类似,只是在计算邻居时采用物品本身,而不是从用户的角度,即基于用户对物品的偏好找到相似的物品,然后根据用户的历史偏好,推荐相似的物品给他。从计算的角度看,就是将所有用户对某个物品的偏好作为一个向量来计算物品之间的相似度,得到物品的相似物品后,根据用户历史的偏好预测当前用户还没有表示偏好的物品,计算得到一个排序的物品列表作为推荐。下图给出了一个例子,对于物品 A,根据所有用户的历史偏好,喜欢物品 A 的用户都喜欢物品 C,得出物品 A 和物品 C 比较相似,而用户 C 喜欢物品 A,那么可以推断出用户 C 可能也喜欢物品 C。

  • n-grams

    Ngram(也称为N元模型)是自然语言处理中一个非常重要的概念。在NLP中,人们基于一定的语料库,可以利用Ngram来预计或者评估一个句子是否合理。另外一方面,Ngram可以用来评估两个字符串之间的差异程度,这是模糊匹配中常用的一种手段。而且广泛应用于机器翻译、语音识别、印刷体和手写体识别、拼写纠错、汉字输入和文献查询。

    假定S表示某个有意义的句子,由一串特定顺序排列的词w1,w2,w3,..,wn组成,n是句子的长度。想知道S在文本中(语料库)出现的可能性,也就是数学上所说的概率P(S):
    P(S)=P(w1,w2,w3,..,wn)=P(W1)P(W2|W1)P(W3|W1,W2)..P(Wn|W1,W2,..,Wn−1)
    可是这样的方法存在两个致命的缺陷:

    參数空间过大:条件概率P(wn|w1,w2,..,wn-1)的可能性太多,无法估算,不可能有用;
    数据稀疏严重:对于非常多词对的组合,在语料库中都没有出现,依据最大似然估计得到的概率将会是0。最后的结果是,我们的模型仅仅能算可怜兮兮的几个句子,而大部分的句子算得的概率是0。

    为了解决參数空间过大的问题。引入了马尔科夫假设:随意一个词出现的概率只与它前面出现的有限的一个或者几个词有关。

    如果一个词的出现仅依赖于它前面出现的一个词,那么我们就称之为bigram:
    P(S)=P(w1,w2,w3,..,wn)=P(W1)P(W2|W1)P(W3|W1,W2)..P(Wn|W1,W2,..,Wn−1)≈P(W1)P(W2|W1)P(W3|W2)..P(Wn|Wn−1)

    假设一个词的出现仅依赖于它前面出现的两个词,那么我们就称之为trigram:
    P(S)=P(w1,w2,w3,..,wn)=P(W1)P(W2|W1)P(W3|W1,W2)..P(Wn|W1,W2,..,Wn−1)≈P(W1)P(W2|W1)P(W3|W2,W1)..P(Wn|Wn−1,Wn−2)

    一般来说,N元模型就是假设当前词的出现概率只与它前面的N-1个词有关。而这些概率参数都是可以通过大规模语料库来计算,比如三元概率有:

    P(Wi|Wi−1,Wi−2)≈count(Wi−2Wi−1Wi)/count(Wi−2Wi−1)

    在实践中用的最多的就是bigram和trigram了,高于四元的用的非常少,由于训练它须要更庞大的语料,并且数据稀疏严重,时间复杂度高,精度却提高的不多。

  • 余弦距离

    余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。向量,是多维空间中有方向的线段,如果两个向量的方向一致,即夹角接近零,那么这两个向量就相近。而要确定两个向量方向是否一致,这就要用到余弦定理计算向量的夹角。

  1. 如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库?
  • 如果允许添加机器,那就添加机器;尽量不要使用模拟浏览器的方式爬取;
  • 关于数据清洗注意的点就是统一字段名称类型,剔除重复数据
  1. 如何设计一个解决抄袭的方案?
  1. 如何检验一个个人支付账户都多个人使用?
  • 同一地点不同设备登录
  • 不同地点,不同设备登录
  • 同一设备,不同地点登录
  1. 点击流数据应该是实时处理?为什么?哪部分应该实时处理?

  2. 你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在所有情况下通用的模型吗?有你没有知道一些模型的定义并不是那么好?

  • 数据真实有效,当然可能还有一个时间的问题,就是数据要新
  1. 什么是概率合并(AKA模糊融合)?使用SQL处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言?
  1. 你是如何处理缺少数据的?你推荐使用什么样的处理技术?

    • 处理缺失值的方法有三种: 删除数据, 数据插补, 不处理数据
    • 常见的数据插补方法:均值、中位数、众数插补;使用固定值;最近邻插补;回归方法;插值法;其中插值法还有拉格朗日插值法、牛顿插值法、Hermite插值、分段插值、样条插值等
    • 假如数据量很大的时候,如果能通过直接删除少部分数据达到既定的目标,那么删除含有缺失值的数据是很有效的,也是最快的。但是当数据量本来就很少的时候这样的方式就不可取了,需要插值法补充缺失数据的条目。
  2. 你最喜欢的编程语言是什么?为什么?
    js,我本前端出生用习惯了js所以可能会亲近点。当然还有python,包实在是太多了,实在简洁。

  3. 对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。
    tableau,喜欢理由:1.提供对各种数据源的链接 2. 统计介公认的比较好的bi,学习资源特别多,方便学习。3.使用简单,支持多种图表,可以创建统计故事。
    不喜欢:1. 商用版实则有点贵 2.

  4. SAS, R, Python, Perl语言的区别是?

  5. 什么是大数据的诅咒?
    简单的说,就是当你在非常非常大的数据集中寻找规律的时候,你可能可以碰巧找到一些没有预测效果的feature。这是为什么:

  • 完全的巧合,就像中大奖一样。
  • 没有办法再次生成同样的数据集,找到同样的feature。
  • 这个feature预测准确性很差。
  • 你发现的feature掩盖了那些并不明显的但是有很强预测性的feature。
  1. 你参与过数据库与数据模型的设计吗?

  2. 你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?

  3. 你喜欢TD数据库的什么特征?

  4. 如何你打算发100万的营销活动邮件。你怎么去优化发送?你怎么优化反应率?能把这二个优化份开吗?

  5. 如果有几个客户查询ORACLE数据库的效率很低。为什么?你做什么可以提高速度10倍以上,同时可以更好处理大数量输出?

  6. 如何把非结构化的数据转换成结构化的数据?这是否真的有必要做这样的转换?把数据存成平面文本文件是否比存成关系数据库更好?

  7. 什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?
    https://www.jianshu.com/p/bf1d7eee28d0

  8. 如何判别mapreduce过程有好的负载均衡?什么是负载均衡?

负载均衡问题是一个广泛而普遍存在的问题。在所有的分布式系统中几乎都会提及到“长尾问题(Long Tail Problem)”,其实也就是大家常说的“短板理论”,系统的整体表现取决于表现最差的一部分。常见的分布式系统如分布式缓存,分布式存储,分布式计算,分布式数据库等等,都存在这个问题。分布式缓存中可能会遇到短时间内集中访问同一个缓存的情况;分布式存储可能单机磁盘使用过度;分布式计算可能会有单点的计算负担过重;分布式数据库可能会有单机访问量过大。如此总总,只要是分布的,想完全端平一碗水几乎是不大可能的。

在此,总结我对负载均衡的定义:在多点协作的系统中由于不合理的任务分配导致某个或者少量的某些节点处理负担过重,最终拖延整个系统对外的响应效率。

  1. 请举例说明mapreduce是如何工作的?在什么应用场景下工作的很好?云的安全问题有哪些?

25、(在内存满足的情况下)你认为是100个小的哈希表好还是一个大的哈希表,对于内在或者运行速度来说?对于数据库分析的评价?

26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法?

27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下)

28、什么是星型模型?什么是查询表?

29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?

30、在SQL, Perl, C++, Python等编程过程上,待为了提升速度优化过相关代码或者算法吗?如何及提升多少?

31、使用5天完成90%的精度的解决方案还是花10天完成100%的精度的解决方案?取决于什么内容?

32、定义:QA(质量保障)、六西格玛、实验设计。好的与坏的实验设计能否举个案例?

33、普通线性回归模型的缺陷是什么?你知道的其它回归模型吗?

34、你认为叶数小于50的决策树是否比大的好?为什么?

35、保险精算是否是统计学的一个分支?如果不是,为何如何?

36、给出一个不符合高斯分布与不符合对数正态分布的数据案例。给出一个分布非常混乱的数案例。

37、为什么说均方误差不是一个衡量模型的好指标?你建议用哪个指标替代?

38、你如何证明你带来的算法改进是真的有效的与不做任何改变相比?你对A/B测试熟吗?

39、什么是敏感性分析?拥有更低的敏感性(也就是说更好的强壮性)和低的预测能力还是正好相反好?你如何使用交叉验证?你对于在数据集中插入噪声数据从而来检验模型的敏感性的想法如何看?

40、对于一下逻辑回归、决策树、神经网络。在过去15年中这些技术做了哪些大的改进?

41、除了主成分分析外你还使用其它数据降维技术吗?你怎么想逐步回归?你熟悉的逐步回归技术有哪些?什么时候完整的数据要比降维的数据或者样本好?

42、你如何建议一个非参数置信区间?

43、你熟悉极值理论、蒙特卡罗逻辑或者其它数理统计方法以正确的评估一个稀疏事件的发生概率?

44、什么是归因分析?如何识别归因与相关系数?举例。

45、如何定义与衡量一个指标的预测能力?

46、如何为欺诈检验得分技术发现最好的规则集?你如何处理规则冗余、规则发现和二者的本质问题?一个规则集的近似解决方案是否可行?如何寻找一个可行的近似方案?你如何决定这个解决方案足够好从而可以停止寻找另一个更好的?

47、如何创建一个关键字分类?

48、什么是僵尸网络?如何进行检测?

49、你有使用过API接口的经验吗?什么样的API?是谷歌还是亚马逊还是软件即时服务?

50、什么时候自己编号代码比使用数据科学者开发好的软件包更好?

51、可视化使用什么工具?在作图方面,你如何评价Tableau?R?SAS?在一个图中有效展现五个维度?

52、什么是概念验证?

53、你主要与什么样的客户共事:内部、外部、销售部门/财务部门/市场部门/IT部门的人?有咨询经验吗?与供应商打过交道,包括供应商选择与测试。

54、你熟悉软件生命周期吗?及IT项目的生命周期,从收入需求到项目维护?

55、什么是cron任务?
定时任务
56、你是一个独身的编码人员?还是一个开发人员?或者是一个设计人员?

57、是假阳性好还是假阴性好?

58、你熟悉价格优化、价格弹性、存货管理、竞争智能吗?分别给案例。

59、Zillow’s算法是如何工作的?

60、如何检验为了不好的目的还进行的虚假评论或者虚假的FB帐户?

61、你如何创建一个新的匿名数字帐户?

62、你有没有想过自己创业?是什么样的想法?

63、你认为帐号与密码输入的登录框会消失吗?它将会被什么替代?

64、你用过时间序列模型吗?时滞的相关性?相关图?光谱分析?信号处理与过滤技术?在什么样的场景下?

65、哪位数据科学有你最佩服?从哪开始?

66、你是怎么开始对数据科学感兴趣的?

67、什么是效率曲线?他们的缺陷是什么,你如何克服这些缺陷?

68、什么是推荐引擎?它是如何工作的?

69、什么是精密测试?如何及什么时候模拟可以帮忙我们不使用精密测试?

70、你认为怎么才能成为一个好的数据科学家?

71、你认为数据科学家是一个艺术家还是科学家?

72、什么是一个好的、快速的聚类算法的的计算复杂度?什么好的聚类算法?你怎么决定一个聚类的聚数?

73、给出一些在数据科学中“最佳实践的案例”。

74、什么让一个图形使人产生误解、很难去读懂或者解释?一个有用的图形的特征?

75、你知道使用在统计或者计算科学中的“经验法则”吗?或者在商业分析中。

76、你觉得下一个20年最好的5个预测方法是?
传统的预测方法。包括:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。
统计回归。包括:一元线性回归、多元线性回归、正交多项回归、差值回归等。
比较先进复杂一些的有:灰色预测、神经网络预测、模糊预测、马尔科夫预测等。

77、你怎么马上就知道在一篇文章中(比如报纸)发表的统计数字是错误,或者是用作支撑作者的论点,而不是仅仅在罗列某个事物的信息?例如,对于每月官方定期在媒体公开发布的失业统计数据,你有什么感想?怎样可以让这些数据更加准确?

数据分析师面试最常见的10道面试题解答!

1、海量日志数据,提取出某日访问百度次数最多的那个IP。

首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

或者如下阐述:

算法思想:分而治之+Hash

1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理;

2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址;

3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址;

4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP;

2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。

假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

典型的Top K算法,还是在这篇文章里头有所阐述,

文中,给出的最终算法是:

第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27);

第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。

即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N) + N’*O(logK),(N为1000万,N’为300万)。ok,更多,详情,请参考原文。

或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

方案:顺序读文件中,对于每个词x,取hash(x)P00,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。

如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。

对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。

还是典型的TOP K算法,解决方案如下:

方案1:

顺序读取10个文件,按照hash(query)的结果将query写入到另外10个文件(记为)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。

找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件(记为)。

对这10个文件进行归并排序(内排序与外排序相结合)。

方案2:

一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3:

与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

5、 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

遍历文件a,对每个url求取hash(url)00,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,…,a999)中。这样每个小文件的大约为300M。

遍历文件b,采取和a相同的方式将url分别存储到1000小文件(记为b0,b1,…,b999)。这样处理后,所有可能相同的url都在对应的小文件(a0vsb0,a1vsb1,…,a999vsb999)中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。

求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

Bloom filter日后会在本BLOG内详细阐述。

6、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32 * 2 bit=1 GB内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。

方案2:也可采用与第1题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

7、腾讯面试题:给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?

与上第6题类似,我的第一反应时快速排序+二分查找。以下是其它更好的方法:

方案1:oo,申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。

方案2:这个问题在《编程珠玑》里有很好的描述,大家可以参考下面的思路,探讨一下:

又因为2^32为40亿多,所以给定一个数可能在,也可能不在其中;
这里我们把40亿个数中的每一个用32位的二进制来表示
假设这40亿个数开始放在一个文件中。

然后将这40亿个数分成两类:

1.最高位为0
2.最高位为1
并将这两类分别写入到两个文件中,其中一个文件中数的个数<=20亿,而另一个>=20亿(这相当于折半了);

与要查找的数的最高位比较并接着进入相应的文件再查找
再然后把这个文件为又分成两类:
1.次最高位为0
2.次最高位为1
并将这两类分别写入到两个文件中,其中一个文件中数的个数<=10亿,而另一个>=10亿(这相当于折半了);

与要查找的数的次最高位比较并接着进入相应的文件再查找。
…….

以此类推,就可以找到了,而且时间复杂度为O(logn),方案2完。

附:这里,再简单介绍下,位图方法:

使用位图法判断整形数组是否存在重复

判断集合中存在重复是常见编程任务之一,当集合中数据量比较大时我们通常希望少进行几次扫描,这时双重循环法就不可取了。

位图法比较适合于这种情况,它的做法是按照集合中最大元素max创建一个长度为max+1的新数组,然后再次扫描原数组,遇到几就给新数组的第几位置上1,如遇到5就给新数组的第六个元素置1,这样下次再遇到5想置位时发现新数组的第六个元素已经是1了,这说明这次的数据肯定和以前的数据存在着重复。这种给新数组初始化时置零其后置一的做法类似于位图的处理方法故称位图法。它的运算次数最坏的情况为2N。如果已知数组的最大值即能事先给新数组定长的话效率还能提高一倍。

欢迎,有更好的思路,或方法,共同交流。

8、怎么在海量数据中找出重复次数最多的一个?

方案1:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。

9、上千万或上亿数据(有重复),统计其中出现次数最多的前N个数据。

方案1:上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后就是取出前N个出现次数最多的数据了,可以用第2题提到的堆机制完成。

10、一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

方案1:这题是考虑时间效率。用trie树统计每个词出现的次数,时间复杂度是O(nle)(le表示单词的平准长度)。然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(nlg10)。所以总的时间复杂度,是O(nle)与O(nlg10)中较大的哪一个。
附、100w个数中找出最大的100个数。

方案2:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。

方案3:采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。

方案4:采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。

http://www.sohu.com/a/164007245_539390


文章作者: Callable
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Callable !
评论
  目录